Mastering Geospatial Analysis with Python: Read, analyze, and process your geospatial data programmatically

Explore GIS processing and learn to work with various tools and libraries in PythonKey FeaturesRead, analyze, and present geospatial data programmaticallyUnderstand the powerful geoprocessing tools of PythonAutomate your Geospatial workflows using PythonBook DescriptionPython comes with a host of open source libraries and tools that help you work on professional geoprocessing tasks without investing in expensive tools. This book will introduce Python developers, both new and experienced, to a variety of new code libraries that have been developed to perform geospatial analysis, statistical analysis, and data management. As geospatial programming is a specialized subset of Python programming, this book will use examples and code snippets that will help explain how Python 3 differs from Python 2, and how these new code libraries can be used to solve age-old problems in geospatial analysis.You will begin by understanding what geoprocessing is and explore the tools and libraries that Python 3 offers. You will then learn to use Python code libraries to read and write geospatial data. From here, you will move on to working with rasters and vector analysis. You will then learn to perform geospatial queries within databases and learn PyQGIS to automate analysis within the QGIS mapping suite. Moving forward, you will explore the newly released ArcGIS API for Python and ArcGIS Online to perform geospatial analysis and create ArcGIS Online web maps. Further, you will deep dive into Python Geospatial web frameworks and learn to create a geospatial REST API. In the last module, you will work with machine learning Python libraries and also perform geospatial analysis using distributed servers.What you will learnManage code libraries and abstract geospatial analysis techniques using Python 3.Explore popular code libraries that perform specific tasks for geospatial analysis.Utilize these libraries for data conversion, data management, web map and REST API creation.Learn techniques related to processing geospatial data in the cloud. Leverage features of Python 3 with geospatial databases such as PostGIS, SQL Server, and Spatialite.Explore the use of machine learning and cluster computing with geospatial data..Who This Book Is ForThe audience for this book includes students, developers, and geospatial professionals who need a reference book that covers GIS data management, analysis, and automation techniques with code libraries built in Python 3.

Author: Silas Toms;Eric van Rees;Paul Crickard

Learn more